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ABSTRACT. We establish existence of positive solutions of some boundary value problems
for a second order semilinear ordinary differential equation u” + g(t) f(u) = 0 on [0, 1].
The boundary conditions involve three points, 0 < 7 < 1. The conditions on f strictly
include the sub- and super-linear cases.

1. Introduction

We shall establish existence of positive solutions of a second order differential equation
of the form

v +g(t)f(u) =0 (0<t<1) (1.3}

with one of the following boundary conditions
u(0) =0, au(n) =u(l), 0 <np<land an <1; (BC)
4'(0) =0, au(p)=u(l),0<np<land a<l; (BC),

under conditions on f which strictly include the sub- and super-linear cases.

The study of this type of boundary condition was initiated by V. I'in and E. Moiseev
[7]. Existence of solutions of more general differential equations subject to these boundary
conditions has been extensively studied by Gupta and co-authors assuming sublinear
growth conditions at oo in a number of papers, for example [4]. Existence of solutions
has been discussed by Feng and Webb in the resonance cases (an = 1 for BCy, a =1 for
BC,) in [2], and terms with nonlinear growth have been allowed in [3]. We refer to the
cited papers for further references to the literature.

Eq. (1.1) arises from the study of positive radial solutions on an annulus of a nonlinear
elliptic equation of the form -

Au+ h(|z|) f(u) = 0. . (1.3)

Eq. (1.1) contains many important equations which arise from other fields, for example,
the generalized Emden-Fowler equation, where f = w?, p > 0 appears in the fields of
gas dynamics, nuclear physics and chemically reacting systems, and the Thomas-Fermi
‘equation, where f = 4% and g = t~/2, appears in studies of atomic structures. .
When g is continuous, the existence of positive solutions of Eq. (1.1) with suitable
boundary conditions has been studied by Wang [10] by using theories of fixed point index,
in particular norm-type cone expansion and compression theorems. The key conditions
on f are either that f is superlinear, that is lim,o f(z)/z = 0 and lim,_, f(z)/z =
or that f is sublinear, that is lim, o f(z)/z = oo and lim,,« f(z)/z = 0. However,
it is known that Eq.(1.1) with ¢ = 1 has positive solutions for some functions which
may not be superlinear. D. Guo proved such a result [5] [or [6], Example 2.3.1; p. 96)]
again using norm-type cone expansion and compression theorems, when f satisfies 0 <
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limsup,_,, f(z)/z < 8 and 24v/3 < limsup,_,, f(z)/z < co. By using a different nonzero
fixed point theorem, these estimates were improved by Lan and Webb in [9] who obtained
more general results for Eq (1.1) with one of the boundary conditions

u(0) = u(1) = 0, (BC)s
u(0) = u/(1) = 0, (BC)4
v'(0) =u(l) =0. (BC)s

As in [9] we consider Eq. (1.1) when g € L'(0,1) (in particular, g is allowed to have
singularities), g is positive on a set of positive measure, and f satisfies either
0 <limsup f(z)/z < A and B < liminf f(z)/z < oo

=0 T—00

or 0 < limsup f(z)/z < A and B < liminf f(z)/z < oo

z—oo z—0

for suitable A and B that will be explicitly calculated.

We shall prove that, under these conditions, positive solutions exist for Eq. (1.1) with
(BC): when a > 0 and an < 1 and for Eq. (1.1) with (BC); when 0 < a < 1. These are
non-resonance cases and simple examples show that these restrictions on « are necessary.

The method is to write Eq.(1.1) + B.C. as a Hammerstein integral equation

u(t) = / k(t,5)9(s)f(u(s)) ds = Tu(t). (15)

The abstract result of [9], which uses the fixed point index for compact maps and a well-
known nonzero fixed point theorem, shows that T has a positive fixed point under certain
assumptions on k. We verify that each of our boundary value problems give rise to a
kernel (Green’s function) k which satisfy the assumptions of [9].

2. Existence of positive solutions of Hammerstein integral equations

We quote some results concerning the integral equation

)= fo k(t, 5)g(s) f(u(s)) ds = Tuft). (2.1)

We assume the following conditions.

(1) £:[0,1] x [0,1] = [0, 00) is continuous.

(2) f:10,00) = [0, 00) is continuous.

(3) g € L*(0,1) and g(s) > 0 a.e.. :

Let P = {u € C[0,1] : u(t) > 0 for t € [0,1]}. Then P is a cone in C[0,1]. It is well
known that if g is defined on [0,1] and is continuous in [0,1], the map T : P — P is
compact [for example, the book by M.A.Krasnosel’skii, [8]]. Lan and Webb showed this
holds also in the case when g satisfies the condition (3). - -

LEMMA 2.1. Under the hypotheses (1)-(3), the map T defined in (2.1) maps P into P
and is compact.

The following well-known result (see, for example, Theorem 12.3 in Amann [1]) is also
used. : R
Let K be a cone in a Banach space X and for 0 < p < 7 < oo let

K.={zeK:|zl|<r},0K,={z€K:|z]|=r}and K,, ={z € K:p < ||z|| < r}.
o | .



ProPOSITION 2.2. Let T : K, — K be a compact map. Assume that the following
conditions hold.
() Tz} < liz]| for = € 8K,.
{#3) There exists ¢ € K, € # 0 such that
z# Te+ defor z € 0K, and A > 0.

Then T has a fixed point in X ,,. [Hence not zero.]

Idea of the proof:

(1) implies index on K, is 1,

(ii) implies index on K, is 0. :
The additivity property of the index then gives the index on K, is 1 (nonzero!) so there
exists a fixed point of T in K,,,.
Notation:

Let f* = lmsup_ . f(z)/z and fo = hminf,,, f{z}/z, where a denotes either 0 or
0. _

Lan-Webb make assumptions on g and on the kernel &, namely:

(G) There exist a,b € {0, 1] with a < b such that f:g(s)ds > 0.

(K) There exist a continuous function @ : {0,1] — R* and a number v € (0,1] such
that :

k(t,s) < ®(s)for t,s € {0,1] and

v®(s) < k{t,s}for ¢t € [a,bland s E\{O, 1l.

This means being able to find upper and lower bounds for k(2,s) with s fixed, of the
same type. In general we have some freedom in choosing the numbers a,b. See [9] for
some optimal choices of a,b for the boundary conditions (BC); and (BC),.

THEOREM 2.3 (Lan-Webb). Assume that (G), (K) hold and define numbers My, m, by

M = (Ozg% fo ki, )g(s)ds)

my = (min / k(t, s)g(s)ds) :
Then Eq. (2.1) has a solution u € P with u(t) 0 if ezt}aer
(h) 0<f°< My andmy < fuo < 00,

or
(ha} 0L fP < M andmy < fo < oo,
Remark 2.4. The idea of the proof is to use the cone
K ={u¢€ P:min{u(t):a <t <b}>v|lull}-

[T believe the idea of using this type of cone is due to D.Guo.]
To apply Proposition 2.2, the function € = 1 does.
Hypotheses (k) and (hg) include and are more general than the well-known subimeat,
~and superlinear cases, [Linear is not allowed.] The Lan-Webb estimates for the intervals
containing f°, f. etc., improved earlier ones. Norm-type compression and expansion
theorem does not seem to give such a good result. _
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" 3. Positive solutions of u" + g(t) f(u) = 0
We consider the boundary value problem -
| Iu” + g{t)f(u) =0, a.eon 0,1}, : (3.1)
with boundary conditions _ ' :
' CW(0) =0, auln) =u(l), 0<n<1,0<a<l (BC),

THEOREM 3.1, The boundary value problem (3.1), (BC), has a positive solution if
Iy g(s)ds > 0 and either , :
(h;) ngo'(M; andm1<fw§oo, Or(hz) 0§f"°<M;andm;<fo$ob,

. -1 “1
where M, = (maxggsz fcl k(t,s)g(s)d.s) and my = (aﬁnasgsb f: k(t,s)g(s)_d.s)

To prove this we have to determine the kernel k& and obtain appropriate upper and
lower bounds. The solution of u” + y == 0 with these BC’s is (by routine integration)

_a_ - /:(q ~ s)y(s)ds — fa {t — s)y(s)ds.

1 1
u{t}) = m]ﬁ {1 - s)y(s)ds — ]
Thus the kernel is

k(t, s) = ----—-—(1 — &) —

o .
{ (qw'g)? 33’21 {t"”s, S'S £,
1o

l—a
0, s>n, 6, s>t

Upper bounds .
Obviously  k(t,s) < = —2 = @(s)
(44

Lower bounds We take a = 0,b = 5. [a = 5,b = 1 works too.]

We are Jooking for min{k(t,s) : t € [0,7]} as a function of s of the same form as the
upper bound. .

Case 1. s > n, then t < ss0 k{t,s) = 1-e

—a.
Case 2. s < 1.
Fort<s,
1—s o
Bt 5) =1 = ol 9)
| = a . o '
Ml“awI_a(iws)m_(lwa)é(a).

Fort>as , _
hft0) =y~ (g = a)~ (= 9)
o (1~s~wz+0w (1-0a)(1-4))

2 _ (1-a)

Lol —n)

I—a

>a(l — n)®(s).

So we can take v = min{l -~ a, a1l — n)}.

Therefore by Theoerem 2.3 we have proved that a positive solution exists.
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Special case When g(t) = 1,

AR A k(t,s)ds = ... so M= T an?
1 1 —a
;»-;- Oxggélq A k(t,s)ds hence m; = 2=

Remark 2.2. For the BC
w{0) =0, au(n) =u{l), 0 <y < 1. (BC),

it is necessary to have 0 < a < 1 for positive solutions to exist, as is clear from the graph
of a possible solution. [Also the example u” + 2 = 0 shows this. ]

4. The other BC
Similar methods work for the boundary value problem -

w4 gt fu)=0 (0<t<1) | (4.1)
with boundary conditions
w(0) =0, au(n) =u(l), 0<n<1land an < 1. (BC),
This time we take ¢ = 1,0 = 1 to get appropriate lower bounds.

The simple example «” + 2 = 0 shows that the hypothesis an < 1 is necessary to ensure
positive solutions exist. The solution is

ult) = (l:i’f:)t ~ t?

1
and (1) < 0 if am > 1.
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